LA EVOLUCIÓN DEL AVESTRUZ

marzo 28, 2008

Permítanme, antes de comenzar el artículo, robarles unos segundos de su tiempo, con un breve testimonio de alguien que convivió con Jesucristo; comió y conversó con Él durante tres años, le observó padecer, le vio morir… y logró verle  resucitado:

La autoridad del Hijo

“Respondió entonces Jesús, y les dijo: De cierto, de cierto os digo: No puede el Hijo hacer nada por sí mismo, sino lo que ve hacer al Padre; porque todo lo que el Padre hace, también lo hace el Hijo igualmente. Porque el Padre ama al Hijo, y le muestra todas las cosas que él hace; y mayores obras que estas le mostrará, de modo que vosotros os maravilléis. Porque como el Padre levanta a los muertos, y les da vida, así también el Hijo a los que quiere da vida. Porque el Padre a nadie juzga, sino que todo el juicio dio al Hijo, para que todos honren al Hijo como honran al Padre. El que no honra al Hijo, no honra al Padre que le envió. De cierto, de cierto os digo: El que oye mi palabra, y cree al que me envió, tiene vida eterna; y no vendrá a condenación, mas ha pasado de muerte a vida. De cierto, de cierto os digo: Viene la hora, y ahora es, cuando los muertos oirán la voz del Hijo de Dios; y los que la oyeren vivirán. Porque como el Padre tiene vida en sí mismo, así también ha dado al Hijo el tener vida en sí mismo;  y también le dio autoridad de hacer juicio, por cuanto es el Hijo del Hombre.  No os maravilléis de esto; porque vendrá hora cuando todos los que están en los sepulcros oirán su voz;  y los que hicieron lo bueno, saldrán a resurrección de vida; mas los que hicieron lo malo, a resurrección de condenación. (Juan 5:19-29)”

HONOR, A QUIEN HONOR MERECE

La muerte siempre, su senda breve: final físico que cede el paso al espíritu vivificante: 100 años, para los más longevos, y cualquier edad menor para los restantes, en todo punto del planeta. Muy poco, comparado con la posibilidad de una existencia eterna, en una dimensión ajena a la violencia, la vanidad, la envidia…y a todos sus parientes. Nuestra estancia en el mundo, no es más que una gota de tiempo en el océano de la eternidad.

Ahora bien, no se puede permanecer indiferente al hecho de que nuestros días animando carne, en gran medida, ya vienen fijados dentro de la molécula Ácido desoxirribonucleico, más conocido como ADN: el importante componente del material genético de la inmensa mayoría de los organismos, la base química primaria de los cromosomas, y el material en el que los genes están codificados. Un diminuto libro con una inmensa información.

Consideremos el inicio de todo: el embrión humano,  cuyas instrucciones de formación se hallan en los cromosomas. Allí, el ADN codifica toda orden; como un recetario, procesa las proteínas necesarias para el futuro ser, que contará con unos 30.000 genes diferentes, cuyas funciones se intentarán describir, para que se pueda apreciar la inteligencia que se esconde tras su diseño.

De forma sencilla y elemental, se puede comenzar diciendo que si alguien cercano cita esa palabra, inmediatamente solemos asociarla a un buen bistec; y, hasta cierto punto, es un juicio razonable, aunque no todas las proteínas terminan siendo carne. En realidad, somos lo que somos gracias a las propiedades de un conjunto muy variado de ellas. Si nuestro pelo es negro, se debe a que nuestros genes determinan que se cree la melanina responsable de ese color, si tenemos los ojos verdes y no azules, es porque nuestra pigmentación está construida de modo diferente a la necesaria para que sean azules.

Algunas características resultan fáciles de explicar; solo son controladas por un gen o unos pocos. Pero otras conciernen a muchos genes, y exigirían páginas para entenderse. También existen otras inexplicables, que responden a la personalidad del individuo; son las más complejas, muchas veces, las peores, y es preferible ni mencionarlas.

Prefiero que dediquemos un pequeño espacio a las proteínas. ¿Cómo surgen y qué son? Se deben a las uniones de determinados aminoácidos: los ladrillos con los que están construidas. Hay 20 aminoácidos distintos y muy específicos: rasillas grandes, pequeñas, rojas, negras… en fin, toda una gama de propiedades muy bien diferenciadas entre sí.

Estos, se enlazan creando cadenas pépticas, o polipépticas, según su constitución, que una vez maduradas constituirán las proteínas que conforman nuestro organismo o el de cualquier otro ser vivo. Se ordenan de una manera concreta, como una cinta que se va doblando y liando sobre sí misma, hasta resultar una ínfima pelota compacta y muy difícil de deshacer. La proteína, después de plegarse, tendrá un aspecto similar. Estos pliegues condicionarán sus propiedades, y por tanto, las funciones que podrá realizar.

Las enzimas son también proteínas, con una forma especial que les permite unirse a los substratos de la reacción, ayudando a llevarla a cabo. Al final de la síntesis, la enzima libera los productos y regresa a su estado inicial. Su pliegue es crucial; es un catalizador que nuestro propio cuerpo crea para lograr que muchas reacciones químicas precisas en nuestro metabolismo se aceleren, e incluso, que sean posibles. Imaginemos que esta enzima deberá acoplarse a un substrato de forma cuadrada; los pliegues en su estructura deberán formar un hueco de la misma forma, para que ella se ajuste adecuadamente.

Supongamos un error en el montaje, que cambie un aminoácido por otro diferente. Esto podría inducir variación en los pliegues del péptido; quizás el hueco se vuelva triangular. En ese momento la enzima dejaría de funcionar como es debido, ya que el substrato no podría acoplarse. Es como si la enzima fuese un cerrojo, y el substrato la llave. Si está bien montada, el substrato encaja como un llavín en su cerradura. Pero un error de obra haría al cerrojo defectuoso, y el picaporte no funcionará. Es decir, la reacción dejaría de llevarse a cabo, y podría ser un pequeño gran desastre para el cuerpo; así, una enzima puede condicionar el funcionamiento correcto del metabolismo de todo un organismo.

En realidad, esto es solo un ejemplo, pues las proteínas tienen muchas más funciones que esa; controlan muchos aspectos. Un caso palpable, sería un error en la llamada insulina, que implique que esta ya no sea funcional, y no pueda inducir el almacenamiento de azúcar en el hígado. ¿El resultado?: Un individuo diabético.

Otro ejemplo claro de la influencia de las proteínas en nuestras características personales son los grupos sanguíneos. Las diferentes estructuras de una proteína de membrana en los glóbulos rojos determinan el grupo al que pertenecemos (A, B, AB, u O). Algo vital a la hora de la necesidad de transfusión sanguínea por accidente u operación quirúrgica.

Pero, volviendo a los péptidos: obviamente la célula necesita de unas instrucciones de montaje para crearlos. Por si sola, no sabría que hacer con las bases nitrogenadas existentes, pero si accede a la información prevista, no casual, será capaz de formar los aminoácidos imprescindibles para las funciones orgánicas… y esta información está contenida en el ADN, escrita en un código especial: ‘el código genético’. La información será procesada de manera que el resultado final sea una flamante proteína; las instrucciones de montaje de la misma se agrupan en un gen, a veces en varios.

Estrictamente, se considera como un gen aquella fracción de ADN que se transcribe a ARN, y este paso de ADN a ARN se llama transcripción. El ARN es una molécula de estructura y composición similar al ADN. La diferencia funcional más importante es que el ADN se comporta como almacén estable de la información, y el ARN como un mensajero entre el almacén y el procesamiento de esta información. En realidad hay varios tipos de ARN: además del mensajero; pero alargaría mucho este artículo, que está pensado para que resulte básico, elemental, y de fácil comprensión.

Imaginemos al ADN como una gran biblioteca, en nuestro caso, de 46 volúmenes: los cromosomas. Está dispuesta para un químico que necesita realizar múltiples operaciones, (Recordar que solo analizamos aquí la construcción de un nuevo embrión humano, a partir de que un óvulo es fecundado por el espermatozoide) El especialista está frente a su laboratorio, manipulando en diversos equipos, y envía a sus ayudantes (ARNm), a buscar determinada información codificada en la biblioteca, para lograr las reacciones deseadas. Estos datos serán copiados por sus auxiliares, en un papel al que llamaremos ARN, y que luego llevarán ante la sabiduría del laboratorista: el Dr. Ribosoma.

En cuanto este empieza a leer, dará inicio el proceso que terminará con todas las reacciones necesarias y previstas. Se irá montando el péptido codificado en el ARN, a partir de los aminoácidos especificados en las instrucciones transcritas; este proceso de paso de ARN a péptidos se llama traducción. Luego vendrá la maduración del producto sintetizado, hasta llegar a una estructura de proteína utilizable.

Así se producen las proteínas escritas en el ARN mensajero, a su vez codificadas en el ADN; aunque no todo el ADN que es transcrito a ARN codifica para proteínas, pues algunos genes pasan a ARN y no son traducidos a péptidos, sino que realizan funciones vitales en la célula, como por ejemplo, transportar los aminoácidos hasta el ribosoma, o formar parte de la estructura de este último, entre otras.

Más, centrémonos en la biblioteca. El ADN es una molécula enorme, formada por 4 bases nitrogenadas, que se van repitiendo en un orden cronológico. Cada base contiene una molécula de azúcar y una de ácido fosfórico que se unen por afinidad, integrando esqueletos de azúcar y ácido fosfórico, alternados. Es como si cada esqueleto fuera un hilo al cual vamos atando cuencas de cuatro colores distintos: adenina, timina, guanina y citosina; con una peculiaridad importante: forman parejas que son complementarias, encajando dos a dos, como piezas de un rompecabezas.

La adenina con la timina, y la guanina con la citosina; no son intercambiables. Esta propiedad hace que se mantengan unidas las dos cadenas que forman el ADN. Podemos imaginar las dos cadenas unidas, como una tira con dos filas de piezas enfrentadas entre ellas. Su eje longitudinal, partido en dos, descubriría las caras de todas las piezas.

Ahora vamos al siguiente paso: el ARN. Este sería, en el símil bibliotecario, el papel donde los ayudantes apuntarán la información bajo código, para entregarla al r-ibozoma. El papel del ARN, es bastante parecido al de los libros de la biblioteca; es decir, el ARN (ácido ribonucleico), se construye con ‘material‘ similar que el ADN, con una pequeña variación en el extremo de la molécula de azúcar de su esqueleto: un oxígeno más en cada base. Además, los ARN en lugar de la timina del ADN, contienen uracilo. Al final, resulta una cadena sencilla de piezas, con las bases: adenina, uracilo, citosina y guanina, y con un esqueleto morfológicamente diferente.

La síntesis del ARN es similar a la replicación del ADN. La doble cadena de ADN se separa, y hace la función de molde. Las bases del ARN se montarán sobre una de las caras ahora expuestas del ADN abierto, de modo que sean complementarias a la secuencia del molde de ADN. Una vez acabada la réplica en ARN del gen necesario, el mensajero se separará del ADN, y éste volverá a adquirir la forma original de doble cadena. Así, se tendrá una cadena sencilla de bases, con una secuencia complementaria a la del gen que se ha transcrito: un papel con toda la información anotada. El siguiente paso será la lectura por parte del ‘ribozoma‘ que lo traducirá; el decodificador que convertirá lo escrito en el ARN en cadenas polipeptídicas.

¿Cómo se lee esa secuencia de bases que es ahora el gen? Aquí entra en escena el código genético. Las bases del ARN son leídas como palabras; cada combinación distinta de bases, o letras, indica un aminoácido. Sabemos que estos grupitos son de tres, (tripletes). El hecho de que sean tripletes, y no parejas, o cuartetos es pura lógica; la naturaleza utiliza 20 aminoácidos distintos, y si existen 4 bases (adenina, uracilo, guanina y citosina) posibles de ordenar en diversas combinaciones, vemos que si las agrupamos de dos en dos, habrá 16 resultados. Si el código genético se basara en parejas, solo podría tener palabras para 16 de los 20 aminoácidos, y sería insuficiente.

Si las agrupaciones se efectúan con las 4 bases involucradas entre sí, sería excesivo, pues resultarían 256 palabras para describir los 20 aminoácidos: un gasto innecesario de materia. Pero los tripletes, de 3 bases cada uno, dan 64 combinaciones posibles, y aunque sigan siendo demasiadas, responden mejor a las expectativas. La solución aparente, al exceso de palabras ha sido que varias de ellas sean sinónimas; o sea, varios tripletes implican un mismo aminoácido.

Esto, en principio parece ser inútil, y podemos pensar que se podría buscar algún modo para que pudiéramos codificar los aminoácidos con parejas, aunque en última instancia, solo nos faltan 4 palabras. Pero no hay que olvidar que además, el ribosoma precisa de unas señales de puntuación del tipo principio y final, lo que aumenta el número del ‘vocabulario‘ necesario.

Además, los tripletes sinónimos, dan una ventaja que las parejas no poseen: suelen ser muy parecidos, con, normalmente solo una base de diferencia entre ellos. Esto hace que si se ha derivado algún error de copia de ADN a ARN, se pueda salvar en algunos casos, si el triplete resultante resulta sinónimo del original. Algo bien pensado, desde la lógica humana, aunque no definitivo, pues aun hay muchas cosas que podrían saltar a la luz en la misma medida en que la Ciencia continúe su imparable avance.

Una vez ante los ‘tripletes’, el ribosoma leerá la cinta de ARN, comenzando por el extremo con la señal de principio establecida: AUG. Es decir; ‘sabe‘ cómo comenzar a trabajar; es capaz de comprender la orden codificada. Leerá triplete por triplete, y montará una cadena con los aminoácidos que le indica la receta, en el orden explícito.

Por último, el ribosoma hallará una señal de final de síntesis: los llamados ‘tripletes sin sentido‘ o codones stop. Son tres: UAA, UAG y UGA; no existe ningún ARN de transporte, cuyo anticodón sea complementario de ellos y, por lo tanto, la biosíntesis del polipéptido se interrumpe ante cualquiera de estos tres que aparezcan en el proceso. Indican que la cadena polipeptídica ya ha terminado, se soltarán el ARN y el péptido sintetizado, que madurará, se plegará, y estará listo para entrar en acción allí donde haga falta.

Este es, a grandes rasgos, el proceso considerado por algunos como ‘casuístico‘; una de las cuestiones que más debates ha constituido en este blog, derivando hasta el extremo de descalificaciones e insultos que genera la impotencia de críticas coherentes.

¿Es el código contenido en el ADN un Diseño inteligente, o ha surgido por casualidad? ¿Sus señales de ‘inicio‘ y ‘parada‘, de síntesis proteica han sido pensadas por una mente superior, o también derivan del azar? Personalmente, creo que hay demasiado control para pensar en el caos de la casualidad. La verdad está en el corazón del ser humano; cada cual se dará a sí mismo su propia respuesta. No hagamos como el avestruz, que por miedo esconde su cabeza, pensando que así se librará del peligro. Un animal de características únicas, que jamás tendrá pretensiones de ‘evolucionar‘ hasta águila o ‘involucionar‘ desde ella, según instruye Job 39: 13:

“¿Diste tú hermosas alas al pavo real, o alas y plumas al avestruz?  El cual desampara en la tierra sus huevos,  y sobre el polvo los calienta, y olvida que el pie los puede pisar, y que puede quebrarlos la bestia del campo.  Se endurece para con sus hijos, como si no fuesen suyos, no temiendo que su trabajo haya sido en vano; porque le privó Dios de sabiduría, y no le dio inteligencia.” 

Las mentiras vuelan por el mundo, mientras las verdades aun se están poniendo los botines; pero la bota de la verdad, una vez sobre la patraña, impedirá que esta vuelva a levantar el vuelo nunca más.

**********


ESLABONES PERDIDOS JUEGAN AL ESCONDIDO

marzo 24, 2008

Porque convenía a aquel por cuya causa son todas las cosas, y por quien todas las cosas subsisten, que habiendo de llevar muchos hijos a la gloria, perfeccionase por aflicciones al autor de la salvación de todos. (Hebreos 2:10)

¿DÓNDE ESTÁ MI GATO-PERRO?

Según la teoría de la evolución de las especies, en su ‘evolución‘ más reciente: el neodarwinismo fundamentado en la selección natural y las mutaciones ‘azarosas’, todo ser vivo (me gusta incluir a todo tipo de plantas) proviene de un antecesor. Es decir, una especie tiene el don de trasmutar en otra con el tiempo, y todo lo que vemos, en mar y tierra, nació de esa manera. Ante la reconocida dureza de reflexión, se ha intentado endulzar la mitificada tarta evolutiva con la posibilidad de cambios en un entorno de miles de millones de años.

O sea, que por ahí deben andar los restos de las numerosas especies intermedias derivadas del enorme proceso que ha llegado a generar la multitud de ellas que habitan hoy el planeta Tierra. En el pasado debieron haber visto la luz solar, criaturas con rasgos de lagartos-aves, en combinación con aquellos que tenían de pez, los cuales, por puro raciocinio, debieron haber convivido con los propios, peces y reptiles existentes. También por pura deducción lógica, en ese entorno se deberían haber sumado los pájaros con características de animales rastreros, cuya formación morfológica debía aparecer en fósiles de de pájaros reptiles: las famosas formas transitorias citadas por la evolución.

Continuando con el razonamiento y la deducción, en la actualidad deberíamos estar rodeados de millones y millones de esas raras especies surgidas de la selección natural.  Cantidad y variedad: ese es el enigma que no logra descifrar la ausencia de los registros fósiles correspondientes, ya que deberían multiplicar los existentes, y sus restos estar esparcidos por el mundo entero; cosa que no ha sucedido (ni sucederá).

Ya hay muchos paleontólogos que se han visto obligados por la aparición repentina y completa de seres complejos, en la llamada ‘explosión cámbrica’, y por esta ausencia fósil, a crear la nueva teoría de ‘equilibrio punteado‘ de la que se ha debatido en este blog, consistente en que las especies fueron apareciendo de pronto, con sus cadenas de ADN totalmente cambiadas para dar lugar a cada nuevo ente biológico.

En su “El Origen de las Especies”, Darwin comentaba: “Si mi teoría es correcta, innumerables variedades intermedias, que vincularían más ajustadamente todas las especies del mismo grupo, deben haber existido con seguridad… En consecuencia, evidencias de su anterior existencia podrían encontrarse solamente entre los restos fósiles“.

Resulta evidente que el mismo autor del caos evolutivo era consciente de la ausencia de dichas formas transitorias. Miraba esperanzado hacia el futuro, contando con que fuesen localizadas. Por esta razón, considerando que ello constituía el obstáculo mayor de su teoría, agregó un capítulo a su Origen de las Especies: ‘Dificultades de la Teoría’, del cual he extraído el siguiente párrafo:

¿Por qué si las especies han descendido de otras por medio de claras graduaciones no encontramos por todas partes innumerables formas transitorias? ¿Por qué no se presenta toda la naturaleza desordenada, contrariamente a lo que sucede con las especies existentes, a las que podemos ver bien definidas? Pero, como según esta teoría deben haber existido innumerables formas transitorias, ¿por qué no las encontramos enclavadas en cantidad innumerable en la corteza terrestre?… Pero en la región intermedia, con condiciones de vida intermedia, ¿por qué no encontramos ahora variedades intermedias estrechamente vinculadas? Esta dificultad me ha confundido totalmente durante un largo tiempo”.

Solo le quedaba una alternativa ante esta situación: aunque los registros fósiles hallados hasta aquel momento eran inadecuados, planteó que cuando se les hubieran estudiado pormenorizadamente se encontrarían los nexos necesarios: los eslabones perdidos.

Los investigadores evolutivos, fieles al concepto, llevan más de 150 años excavando y buscando en todos los continentes, pero sin resultados satisfactorios: no solo no existe evidencia de forma transitoria alguna, sino que lo hallado señala que cada especie apareció de pronto, con todas sus características. Cada fósil extraído, mostró que la vida apareció sobre la Tierra repentina y totalmente formada. La esperanza evolucionista, devino en colapso.

El reconocido paleontólogo evolucionista británico, Derek V. Ager, lo corrobora:

“Lo que se presenta, si analizamos pormenorizadamente los registros fósiles, ya sea a nivel de órdenes o especies, es que lo que encontramos una y otra vez no es una evolución gradual sino la repentina explosión o aparición de un grupo a expensa de otro”.

Por su parte, Mark Czarnecki, otro paleontólogo evolucionista, comenta lo siguiente:

 “Los registros fósiles, las huellas de las especies desaparecidas preservadas en las formaciones geológicas de la Tierra, han sido un gran problema para la demostración de la teoría. Dichos registros nunca han revelado rastros de las hipotéticas variantes intermedias de Darwin. Por el contrario, las especies aparecen y desaparecen abruptamente, y esta anomalía ha alentado los argumentos creacionistas de que cada especie fue creada por Dios”.

Pero, como la esperanza es lo último que se pierde, siempre hay alguien que insiste en la posibilidad de una aparición futura. (Si emergió un Cámbrico negativo, ¿por qué no un golpe de suerte evolutiva?) A esta opción se apunta el profesor de paleontología de la Universidad de Glasgow, T. Neville George:

“No hay ninguna necesidad de disculparse por más tiempo de la pobreza de los registros fósiles. En cierta manera se han vuelto casi inmanejables por lo cuantioso, y los descubrimientos están poniendo fuera de lugar la integración… Sin embargo los registros fósiles continúan componiéndose principalmente de vacíos”.

Ya hemos visto, en un artículo anterior, fotos de fósiles aparecidos en las revistas  National Geographic y New Scientist, datados, desde supuestos 40 a 400 millones de años, que resultan morfológicamente idénticos a los actuales congéneres. Exactamente, se trataban de un tiburón, una langosta, una hormiga y una cucaracha. Si 400 millones de años no resultan suficientes para modificar una especie, ¿cuántos millones son necesarios para que ocurran las ‘especies transitorias’? Y hablamos de millones de especies; cada una urgiendo la forzosa intervención del tiempo para que se manifiesten en ellas cada estado transicional.

De modo que el único recurso que le queda a los desbrozadores de tierras, es donar sus palas, picos y demás enseres de trabajo a alguna ONG de la construcción, para darles mejor uso… o continuar en su tozudez generadora de promesas y sueños fatuos, intentando hallar el gato-perro que les catapulte a la fama, pues la competencia es tanta, que la vanidad ha hecho que esta constituya su principal objetivo; más allá de demostrar que procedemos del azar y hacia el azar nos dirigimos.

No importa que la riqueza de la Creación, que señala en todo momento planificación y diseño, apunte hacia un plan de futuro para la humanidad. Hay una seudo ciencia, que se la juega en el ‘todo por el todo‘, para lograr que la mente de Dios ni siquiera se considere en el pensamiento humano.

**********


SELECCIÓN NATURAL Y MUTACIONES

marzo 15, 2008

“Pues con el corazón se cree para alcanzar la justicia y con la boca se confiesa a Jesucristo, para alcanzar la salvación.” (Romanos 10:10)

ANEMIA FALCIFORME: ¿MUTACIÓN POSITIVA?

En un reciente debate de este blog; una deliberación trató sobre las ventajas evolutivas de la mutación para las especies. Provino de alguien capacitado para opinar, a quien le agradezco su participación y la generosa entrega de su tiempo, pues presenta alternativas de reflexión, siempre bienvenidas a esta página. Sus palabras decían lo siguiente:

‘…sabrás de la existencia de la malaria, enfermedad producida por un protozoo, el Plasmodium, que mata en torno a 3 millones de personas al año (más que el SIDA, pero como solo afecta al tercer mundo…) Bien, este protozoo se adquiere por medio de la picadura de un mosquito, y es capaz de invadir las células rojas de la sangre: los eritrocitos. Al final, causa una hemólisis severa que puede causar muerte al infestado.

Por otro lado, existe una enfermedad hereditaria llamada anemia falciforme. Esta enfermedad es producida por una única mutación del gen de las cadenas beta de la hemoglobina: un residuo de aminoácido glutámico pasa a ser valina. Y esta única mutación hace que los eritrocitos adquieran forma de hoz y sean mucho más viscosos, con lo que pasan con mayor dificultad por capilares y vénulas.

Pues bien, se ha podido observar que la frecuencia de aparición de esta mutación, y por tanto de la enfermedad, es mucho más elevada en África que en otras zonas del mundo. Tras multitud de estudios se ha demostrado que aquellas personas que tenían la enfermedad eran mucho más resistentes a ser infectados por el plasmodio de la malaria. Esto permite que aquellos individuos que presentan la enfermedad, tengan más probabilidades de sobrevivir a la malaria y por tanto de pasar sus genes a su descendencia. Y por ello, esta mutación se ha extendido en la población africana.’

Hasta aquí el comentario; ahora, reflexionemos sobre lo expuesto: ‘La mutación que genera la anemia falciforme es buena, pues ‘posibilita’ (no ‘asegura’) la inmunidad ante la malaria’.

La anemia de células falciformes (drepanocítica) afecta la hemoglobina, una proteína que forma parte de los glóbulos rojos y se encarga del transporte de oxígeno. Es de origen genético; ocurre por la sustitución de un aminoácido por otro en su síntesis, motivando que, a baja tensión de oxígeno, la hemoglobina se deforme y el eritrocito adquiera apariencia de hoz. Esta nueva geometría crea conflicto circulatorio, se taponan los vasos sanguíneos y causan síntomas que van, desde la propia anemia hasta la muerte.

¿Pueden desviar nuestra atención, los hipotéticos beneficios sin garantía, de la mutación que provoca la anemia falciforme y olvidar por eso el daño producido? Me parece oportuno trasmitir a las personas que oyen decir que las mutaciones pueden ser buenas, las consecuencias que tienen que enfrentar, quienes ‘sufren’ en su propio cuerpo, las ‘bondades’ de esta mutación por transferencia parental:

Se dan cuadros dolorosos y agudos causados por vasos sanguíneos bloqueados y órganos dañados; así como el ‘secuestro esplénico’ (se dilata el bazo, atrapando células sanguíneas). O crisis aplásica (una infección hace que la médula ósea deje de producir glóbulos rojos). Todos son trances dolorosos, en casi todos los pacientes, en algún momento de sus vidas; pueden durar de horas a días, afectando los huesos de la espalda, los largos y el tórax. Pueden ser tan graves que requieren hospitalización para el control del dolor mediante líquidos intravenosos, y llegan a matar.

Si son repetitivas, pueden ocasionar daños en riñones, pulmones, huesos, hígado y sistema nervioso central. Se dan ataques de dolor abdominal, de hueso, Jadeo, Retraso en el crecimiento y en la pubertad, Fatiga, Fiebre, Ictericia, Taquicardia, Orina sanguinolenta (hematuria), Dolor en el pecho, Sed excesiva, Micción frecuente, Erección dolorosa (priapismo; esto ocurre en el 10 al 40% de los hombres con la enfermedad), Visión deficiente y ceguera. Así como susceptibilidad a infecciones y úlceras en la parte inferior de las piernas. (En adolescentes y adultos)

Los trasplantes de médula ósea pueden curarla, pero sólo se recomiendan en una minoría de pacientes debido al alto riesgo, pues las drogas necesarias para posibilitar el trasplante son altamente tóxicas, además de la dificultad para encontrar donantes apropiados.

Los tratamientos adicionales pueden ser: diálisis o trasplante de riñón para enfermedad renal, extirpación de la vesícula, reemplazo de cadera en caso de necrosis, cirugía para problemas oculares y transfusiones o cirugía para eventos neurológicos, tales como accidentes cerebrovasculares. Las causas de muerte abarcan insuficiencia de órganos e infección. Algunos viven incidentes menores, breves y poco frecuentes, mientras que otros sufren traumas graves, prolongados y habituales. Veamos qué problemas clínicos específicos puede producir la anemia falciforme:

Infecciones.- Los bebés y niños pequeños enfermos, son especialmente propensos a contraer graves infecciones bacterianas como la meningitis (infección de la membrana que reviste el cerebro) y las infecciones de la sangre. Presentan la principal causa de muerte entre los niños afectados, sobre todo en los países pobres. En los ricos, puede detectarse en la mayoría de los recién nacidos, proporcionándoles la atención médica adecuada para prevenir complicaciones, pero solo eso.

Episodios de dolor: Es el síntoma más común de la dolencia. Algunos afectados tienen uno o ningún episodio de dolor anual, mientras otros llegan a tener 15 o más. Suelen durar desde unas horas hasta varios días o incluso semanas y puede originarse en cualquier órgano o articulación del cuerpo donde los glóbulos falciformes se amontonen y bloqueen los vasos sanguíneos. Algunos estados pueden ser graves y necesitan ser tratados en un hospital con analgésicos potentes administrados por vía intravenosa.

Accidente cerebrovascular.- Ocurre si los glóbulos en forma de hoz bloquean un vaso sanguíneo del cerebro. El 10% de los niños con la mutación lo sufre, pudiendo llegar a incapacidades permanentes. En algunos casos, los médicos pueden identificar los niños con un mayor riesgo, tras examen por ultrasonido; en ocasiones indicando transfusiones de sangre periódicas para evitarlo. Un estudio realizado en 1998 comprobó que estas reducían mucho el riesgo en niños; también el de un segundo accidente. Pero estas, si son periódicas tienen peligro, pues se acumula más hierro del debido en el organismo y se puede generar infección en la sangre.

Síndrome torácico agudo.- Este síndrome tiene síntomas similares a los de la neumonía, como dificultades para respirar, dolor en el pecho y fiebre. Puede ser causado por una infección o por el bloqueo de los vasos sanguíneos del pulmón; puede ser fatal y debe tratarse en un hospital, con antibióticos, transfusiones de sangre, analgésicos, oxígeno y medicamentos que ayudan a abrir los vasos sanguíneos y mejorar la respiración.

Problemas de visión.- Cuando los diminutos vasos sanguíneos del ojo se bloquean con glóbulos falciformes, pueden aparecer problemas de visión e incluso ceguera. Algunos niños con la mutación, pueden necesitar exámenes de vista periódicos.

Retraso en el crecimiento.- Los niños con esta anemia suelen crecer más lentamente que lo normal y comienzan la pubertad después que los demás. Por lo general, suelen ser pálidos, les falta el aire y se cansan fácilmente.

Embarazo.- Las mujeres que hereden esta mutación tienen un riesgo mayor de sufrir complicaciones que pueden afectar su salud y la de sus bebés. Durante el embarazo, la enfermedad puede volverse más grave y las crisis de dolor pueden ocurrir con más frecuencia. El riesgo de parto prematuro y de dar a luz un bebé de bajo peso, es mayor.

La anemia depranocítica, causada por un tipo anormal de hemoglobina (pigmento portador de oxígeno) llamada hemoglobina S, es heredada de ambos padres como un rasgo autosómico recesivo. Si la hemoglobina S se hereda de uno de los padres, el hijo adquiere el rasgo depranocítico, pero la enfermedad se presenta generalmente sin síntomas. Este mal, afecta principalmente a personas de herencia africana, con lo que, además de en África, 1 de 400 afro americanos también se ven afectados.

La distribución de las altas incidencias de anemia falciforme, coincide en África con áreas de presencia de la malaria falciparum, la forma más severa y con frecuencia mortal, de esta infección, causada por el Plasmodium falciparum, un protozoario parásito de los glóbulos rojos del hombre. Los africanos con hemoglobina normal (HN-HN) son muy susceptibles a la malaria y con frecuencia sucumben a esta enfermedad, mientras que los portadores del gen mutante falciforme, en forma homocigota, son muy resistentes a la infección del parásito. Se supone que los eritrocitos deformados y de poco volumen, no permiten el desarrollo adecuado del parásito en su interior, por lo que la infección nunca ocurre. Sin embargo, la anemia es tan severa en estos individuos, que no suelen llegar a los 40 años.

Por otro lado, los heterocigotos (HN-HS), en los que sólo una proporción de sus eritrocitos son falciformes, presentan resistencia a la infección del plasmodio de la malaria y son lo suficientemente robustos para no sufrir severamente los efectos de la anemia. Y esto es precisamente lo que se manifiesta como evidencia de que la selección natural ha favorecido al individuo, presentada como un caso de selección ‘balanceadora o estabilizante’, en el que una mutación, letal en los homocigotos, se conserva inocua en los heterocigotos que han adquirido una adaptación favorable a las condiciones de su medio, que incluyen el alto riesgo de contraer la malaria falciparum. Pero no señalan que solo una parte de sus eritrocitos son falciformes, que el resto es normal ni que la garantía de inmunidad no es del 100%.

Este paralelismo malaria/anemia depranocítica,  no pasa de ser una simple coincidencia; la relación de esta mutación, como respuesta genética producto de una hipotética selección natural, queda desmentida, según puede verse en el mapa. En países del sur de Asia como el oeste de Irán, todo Pakistán, Afganistan, India, Bangladesh, Nepal, Myanmar, Thailandia, Cambodia, Laos, Vietnam y parte del sur de China, la malaria ha impuesto un trono, y sin embargo, la anemia falciforme no se manifiesta con mayor incidencia que, digamos, en Francia. Por lo que la relación malaria/mutación falciforme africana, no va más allá de la simple coincidencia, al igual que la gripe/cancer en Inglaterra.

No solo eso, sino que al turista que viaja a esos países se les recomienda vacunarse contra la malaria, mientras muchos de los nativos ya han adquirido inmunidad ante la picadura del Anopheles. Es decir: ‘no ha sido necesaria una mutación para hacerle frente a la enfermedad’; el propio organismo logra crear los anticuerpos necesarios. Dicho esto: ¿puede considerarse beneficiosa una mutación que no deja vivir a un grupo importante de individuos más allá de los 40 años, luego de sufrir toda su vida hasta el final,  cuando se demuestra que nuestro código genético codificado contempla la autodefensa?  ¿Es racional plantear que la mutación se origina porque constituye una ventaja evolutiva?

 Nacer con la mutación, implica peor calidad de vida hasta el final; la malaria en cambio, es curable. El vector de la malaria humana son las hembras de mosquitos del género Anopheles. Los machos no pican al ser humano, ya que únicamente se alimentan de jugos vegetales. La única causa de muerte ocurre por la falta de atención médica, que no tiene que ver con la genética, sino con la riqueza o la pobreza. Esto si es un ejemplo negativo del azar, que establece que unos nazcan en una sociedad con todos los medios disponibles, mientras otros lo hacen en una aldea del centro de Zaire, en el sur de China, o en las zonas más pobres de América Latina, según puede verse en el siguiente mapa:

Malaria en el mundo

El primer tratamiento eficaz para la malaria, se debió a la corteza del árbol Cinchona, que contiene el alcaloide quinina: el mejor antídoto hasta ahora. En regiones donde la malaria es altamente endémica, las personas son tan a menudo infectadas que a veces desarrollan la ‘inmunidad adquirida’, es decir: son portadores más o menos asintomáticos del parásito. Aunque la co-infección VIH-malaria ha incrementado la mortalidad, ésta permanece siendo un problema menor que la combinación de VIH-tuberculosis.

La pregunta que deseo lanzar al lector es la siguiente: ¿cuál es la mejor forma de combatir la malaria: con la mutación que produce la anemia falciforme, que mata y produce sufrimientos prolongados durante todas una vida o con quinina en cantidades suficientes, donde sea necesaria?

La mutación genética causa cada año, solo en España, unos 160000 nuevos casos de cáncer. He accedido a un sublistado de 110 enfermedades genéticas, en el que aparecen otros cientos más; de él extraje algunas para compartirlas en esta página:

Leucemia infantil, causada por mutación celular, retinoblastoma: enfermedad que forma células cancerosas en la retina. Detección de la prevalencia de mutaciones consideradas malignas en los genes de la cadena pesada de la betamiosina (MYH7, 11 mutaciones) y la troponina T (TNNT2, 5 mutaciones) en pacientes con miocardiopatía hipertrófica.

Algunas otras derivaciones de la ‘bondadosa‘ mutación genética, que se supone algunas veces buena para la evolución (mejoría biológica) del ser humano, son: Aneuploidía, Beta-talasemia, Enfermedad de Creutzfeldt-Jakob, Cromosoma Filadelfia, Distrofia muscular de Duchenne, Síndrome de Down, Enfermedad poliquística renal, Esclerosis tuberosa, Fenilcetonuria, Galactosemia, Glomeruloesclerosis diabética, Glucogenosis, Hemofilia, Hipertermia maligna, Síndrome de Marfan, Neurofibromatosis, Osteogénesis imperfecta, Osteopetrosis, Síndrome de Patau, Síndrome de Proteus, Síndrome de Rett, Sindrome de Lowe, Síndrome de Stickler, Síndrome de Beckwith Wiedemann, Síndrome de Ochoa, Síndrome de von Hippel-Lindau, Talasemia, Enfermedad de Tarui, Enfermedad de Tay-Sachs, Síndrome de Tourette, Síndrome de Turner, Enfermedad de Von Gierke, Síndrome de Williams, Enfermedad de Wilson, Síndrome de Wolff-Parkinson-White, Síndrome del XYY, Síndrome de Zellweger.

Solo son algunas; ponerlas todas significaría una conferencia escrita, que no es el objetivo del blog. Pero sí, deseo hacer un llamado a la meditación, a todos aquellos que han sido imbuidos de la idea de que las mutaciones pueden constituir un ejemplo de la selección natural. ¿Es más el daño que provocan, que las hipotéticas ventajas que algunos piensan? Yo creo que sí.

¿Y ustedes?

**********